Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available May 25, 2026
-
Social touch is a common method of communication between individuals, but touch cues alone provide only a glimpse of the entire interaction. Visual and auditory cues are also present in these interactions, and increase the expressiveness and recognition of the conveyed information. However, most mediated touch interactions have focused on providing only haptic cues to the user. Our research addresses this gap by adding visual cues to a mediated social touch interaction through an array of LEDs attached to a wearable device. This device consists of an array of voice-coil actuators that present normal force to the user’s forearm to recreate the sensation of social touch gestures. We conducted a human subject study (N = 20) to determine the relative importance of the touch and visual cues. Our results demonstrate that visual cues, particularly color and pattern, significantly enhance perceived realism, as well as alter perceived touch intensity, valence, and dominance of the mediated social touch. These results illustrate the importance of closely integrating multisensory cues to create more expressive and realistic virtual interactions.more » « lessFree, publicly-accessible full text available November 3, 2025
-
The lifetime of tropospheric O3 is difficult to quantify because we model O3 as a secondary pollutant, without direct emissions. For other reactive greenhouse gases like CH4 and N2O, we readily model lifetimes and timescales that include chemical feedbacks based on direct emissions. Here, we devise a set of artificial experiments with a chemistry-transport model where O3 is directly emitted into the atmosphere at a quantified rate. We create 3 primary emission patterns for O3, mimicking secondary production by surface industrial pollution, that by aviation, and primary injection through stratosphere–troposphere exchange (STE). The perturbation lifetimes for these O3 sources includes chemical feedbacks and varies from 6 to 27 days depending on source location and season. Previous studies derived lifetimes around 24 days estimated from the mean odd-oxygen loss frequency. The timescales for decay of excess O3 varies from 10 to 20 days in northern hemisphere summer to 30 to 40 days in northern hemisphere winter. For each season, we identify a single O3 chemical mode applying to all experiments. Understanding how O3 sources accumulate (the lifetime) and disperse (decay timescale) provides some insight into how changes in pollution emissions, climate, and stratospheric O3 depletion over this century will alter tropospheric O3. This work incidentally found 2 distinct mistakes in how we diagnose tropospheric O3, but not how we model it. First, the chemical pattern of an O3 perturbation or decay mode does not resemble our traditional view of the odd-oxygen family of species that includes NO2. Instead, a positive O3 perturbation is accompanied by a decrease in NO2. Second, heretofore we diagnosed the importance of STE flux to tropospheric O3 with a synthetic “tagged” tracer O3S, which had full stratospheric chemistry and linear tropospheric loss based on odd-oxygen loss rates. These O3S studies predicted that about 40% of tropospheric O3 was of stratospheric origin, but our lifetime and decay experiments show clearly that STE fluxes add about 8% to tropospheric O3, providing further evidence that tagged tracers do not work when the tracer is a major species with chemical feedbacks on its loss rates, as shown previously for CH4.more » « less
-
Touch as a modality in social communication has been getting more attention with recent developments in wearable technology and an increase in awareness of how limited physical contact can lead to touch starvation and feelings of depression. Although several mediated touch methods have been developed for conveying emotional support, the transfer of emotion through mediated touch has not been widely studied. This work addresses this need by exploring emotional communication through a novel wearable haptic system. The system records physical touch patterns through an array of force sensors, processes the recordings using novel gesture-based algorithms to create actuator control signals, and generates mediated social touch through an array of voice coil actuators. We conducted a human subject study ( N = 20) to understand the perception and emotional components of this mediated social touch for common social touch gestures, including poking, patting, massaging, squeezing, and stroking. Our results show that the speed of the virtual gesture significantly alters the participants' ratings of valence, arousal, realism, and comfort of these gestures with increased speed producing negative emotions and decreased realism. The findings from the study will allow us to better recognize generic patterns from human mediated touch perception and determine how mediated social touch can be used to convey emotion. Our system design, signal processing methods, and results can provide guidance in future mediated social touch design.more » « less
An official website of the United States government

Full Text Available